Tuesday, October 25, 2016

Bewegende Gemiddelde Filter Vertraging

Bewegende gemiddelde - MA afbreek bewegende gemiddelde - MA As SMA voorbeeld, kyk na 'n sekuriteit met die volgende sluitingsdatum pryse meer as 15 dae: Week 1 (5 dae) 20, 22, 24, 25, 23 Week 2 (5 dae) 26, 28, 26, 29, 27 Week 3 (5 dae) 28, 30, 27, 29, 28 A 10-dag MA sou gemiddeld uit die sluitingsdatum pryse vir die eerste 10 dae as die eerste data punt. Die volgende data punt sal daal die vroegste prys, voeg die prys op dag 11 en neem die gemiddelde, en so aan, soos hieronder getoon. Soos voorheen verduidelik, MA lag huidige prys aksie omdat dit gebaseer is op vorige pryse hoe langer die tydperk vir die MA, hoe groter is die lag. So sal 'n 200-dag MA 'n veel groter mate van lag as 'n 20-dag MA het omdat dit pryse vir die afgelope 200 dae bevat. Die lengte van die MA om te gebruik, hang af van die handel doelwitte, met korter MA gebruik vir 'n kort termyn handel en langer termyn MA meer geskik vir 'n lang termyn beleggers. Die 200-dag MA word wyd gevolg deur beleggers en handelaars, met onderbrekings bo en onder hierdie bewegende gemiddelde beskou as belangrike handel seine wees. MA ook mee belangrik handel seine op hul eie, of wanneer twee gemiddeldes kruis. 'N stygende MA dui daarop dat die sekuriteit is in 'n uptrend. terwyl 'n dalende MA dui daarop dat dit in 'n verslechtering neiging. Net so, is opwaartse momentum bevestig met 'n lomp crossover. wat gebeur wanneer 'n korttermyn-MA kruisies bo 'n langer termyn MA. Afwaartse momentum bevestig met 'n lomp crossover, wat plaasvind wanneer 'n kort termyn MA kruisies onder 'n langer termyn MA. Documentation grpdelay beskrywing GD, w grpdelay (b, a) gee terug Die groep vertraging reaksie, GD. van die diskrete-tyd filter wat deur die insette vektore, b en a. Die insette vektore die koëffisiënte vir die teller, b. en deler, a. polinome in Z -1. Die Z-transform van die diskrete-tyd filter is H (z) B (Z) A (Z) x2211 l 0 N x2212 1 b (n 1) Z x2212 l x2211 l 0 M x2212 1 n (l 1) Z x2212 l. Die filters groep vertraging reaksie is geëvalueer op 512 eweredig gespasieerde punte in die interval 0, 960) op die eenheidsirkel. Die evaluering punte op die eenheidsirkel terugbesorg in w. GD, w grpdelay (b, a, N) gee terug Die groep vertraging reaksie van die diskrete-tyd filter geëvalueer teen N eweredig gespasieerde punte op die eenheidsirkel in die interval 0, 960). n 'n positiewe heelgetal. Vir die beste resultate, stel N 'n waarde van meer as die filter orde. GD, w grpdelay (SOS, N) gee terug Die groep vertraging reaksie vir die tweede-orde artikels matriks, SOS. SOS is 'n K - per-6 matriks, waar die aantal artikels, K. moet groter as of gelyk aan 2. As die aantal afdelings minder as 2 is, grpdelay van mening dat die insette om die teller vektor, b wees. Elke ry van SOS ooreenstem met die koëffisiënte van 'n tweede-orde (biquad) filter. Die i ste ry van die SOS matriks ooreenstem met twee (1) twee (2) twee (3) ai (1) AI (2) ai (3). GD, w grpdelay (d, N) gee terug Die groep vertraging reaksie vir die digitale filter, d. Gebruik designfilt om d genereer gebaseer op frekwensie-reaksie spesifikasies. GD, f grpdelay (. N, FS) spesifiseer 'n positiewe monsterfrekwensie fs in hertz. Dit gee 'n length - N vektor, f. met die frekwensie punte in hertz waarteen die groep vertraging reaksie is geëvalueer. f bevat N punte tussen 0 en FS / 2. GD, w grpdelay (. N, geheel) en GD, f grpdelay (. N, geheel, VS) gebruik N punte rondom die hele eenheidsirkel (0-2 960. of van 0 tot VS). GD grpdelay (. w) en GD grpdelay (. f, FS) terugkeer die groep vertraging reaksie geëvalueer op die hoek frekwensie in w (in radiale / monster) of in f (in siklusse / eenheid tyd), onderskeidelik, waar FS is die monsterfrekwensie. w en f is vektore met ten minste twee elemente. grpdelay (.) met geen uitset argumente plotte die groep vertraging reaksie teenoor frekwensie. grpdelay werk vir beide werklike en komplekse filters. Let wel: As die insette om grpdelay is enkele presisie, is die groep vertraging bereken deur enkel-presisie rekenkundige. Die uitset, GD. is enkele presisie. Kies jou CountryDocumentation Hierdie voorbeeld wys hoe om te gebruik bewegende gemiddelde filters en hermonstering om die effek van periodieke komponente van die tyd van die dag op uurlikse temperatuurlesings, isoleer asook verwyder ongewenste lyn geraas van 'n oop-lus spanning meting. Die voorbeeld toon ook hoe om die vlakke van 'n kloksein glad terwyl die behoud van die kante deur die gebruik van 'n mediaan filter. Die voorbeeld toon ook hoe om 'n Hampel filter gebruik om groot uitskieters verwyder. Motivering Smoothing is hoe ons ontdek belangrik patrone in ons data, terwyl die verlaat uit dinge wat onbelangrik (bv geraas) is. Ons gebruik filter om hierdie smoothing voer. Die doel van smoothing is om stadige veranderinge in waarde te produseer sodat sy makliker om tendense in ons data te sien. Soms wanneer jy insette data te ondersoek wat jy kan wens om die data te stryk ten einde 'n tendens in die sein te sien. In ons voorbeeld het ons 'n stel van temperatuurlesings in Celsius geneem elke uur by die Logan-lughawe vir die hele maand van Januarie 2011. Let daarop dat ons visueel die effek wat die tyd van die dag het aan die temperatuurlesings kan sien. As jy in die daaglikse temperatuur variasie oor die maand net belangstel, die uurlikse skommelinge net bydra geraas, wat die daaglikse variasies moeilik om te onderskei kan maak. Om die effek van die tyd van die dag verwyder, sou ons nou graag ons data glad met behulp van 'n bewegende gemiddelde filter. 'N bewegende gemiddelde filter in sy eenvoudigste vorm, 'n bewegende gemiddelde filter van lengte N neem die gemiddelde van elke N agtereenvolgende monsters van die golfvorm. Om 'n bewegende gemiddelde filter aan elke datapunt toepassing, bou ons koëffisiënte van ons filter sodat elke punt ewe is geweeg en dra 24/01 tot die totale gemiddelde. Dit gee ons die gemiddelde temperatuur oor elke tydperk van 24 uur. Filter Vertraging Let daarop dat die gefilterde uitset vertraag met sowat twaalf ure. Dit is te danke aan die feit dat ons bewegende gemiddelde filter het 'n vertraging. Enige simmetriese filter van lengte N sal 'n vertraging van (N-1) / 2 monsters het. Ons kan rekening vir die vertraging met die hand. Uittreksels van Gemiddeld Verskille Alternatiewelik, kan ons ook die bewegende gemiddelde filter gebruik om 'n beter skatting van hoe die tyd van die dag beïnvloed die algehele temperatuur verkry. Om dit te doen, in die eerste, trek die stryk data van die uurlikse temperatuur metings. Dan segment die differenced data in dae en neem die gemiddelde oor die hele 31 dae in die maand. Uittreksels van Peak Envelope Soms het ons ook graag 'n vlot wisselende skatting van hoe die hoogte - en laagtepunte van ons temperatuur sein verander daagliks. Om dit te doen, kan ons die koevert funksie gebruik om die uiterste hoogtepunte en laagtepunte bespeur oor 'n subset van die tydperk van 24 uur aan te sluit. In hierdie voorbeeld, verseker ons daar ten minste 16 uur tussen elke uiterste hoë en uiterste lae. Ons kan ook 'n gevoel van hoe die hoogte - en laagtepunte is trending deur die gemiddeld tussen die twee uiterstes kry. Geweegde Moving Gemiddelde filters Ander vorme van bewegende gemiddelde filters doen elke monster nie ewe gewig. Nog 'n algemene filter volg die binomiale uitbreiding van (1 / 2,1 / 2) n Hierdie tipe filter by benadering 'n normale kurwe vir groot waardes van n. Dit is nuttig vir die filter van hoë frekwensie geraas vir klein N. Om die koëffisiënte vind vir die binomiale filter, oprollen 1/2 1/2 met homself en dan iteratief oprollen die uitset met 1/2 1/2 'n voorgeskrewe aantal kere. In hierdie voorbeeld gebruik vyf totale iterasies. Nog 'n filter ietwat soortgelyk aan die Gaussiese uitbreiding filter is die eksponensiële bewegende gemiddelde filter. Hierdie tipe geweeg bewegende gemiddelde filter is maklik om op te rig en nie 'n groot venster grootte vereis. Jy pas 'n eksponensieel geweeg bewegende gemiddelde filter deur 'n alfa parameter tussen nul en een. 'N Hoër waarde van alfa sal minder glad nie. Zoom in op die lesings vir een dag. Kies jou CountryMoving Gemiddelde Filter (MA filter) laai. Die bewegende gemiddelde filter is 'n eenvoudige Low Pass FIR (Eindige Impulse Response) filter wat algemeen gebruik word vir glad 'n verskeidenheid van monsters data / sein. Dit neem M monsters van insette op 'n tyd en neem die gemiddelde van die M-monsters en produseer 'n enkele uitset punt. Dit is 'n baie eenvoudige LPF (laaglaatfilter) struktuur wat handig te pas kom vir wetenskaplikes en ingenieurs om ongewenste lawaaierige komponent filter van die beoogde data. As die filter lengte toeneem (die parameter M) die gladheid van die uitset verhoog, terwyl die skerp oorgange in die data gemaak word toenemend stomp. Dit impliseer dat die filter het 'n uitstekende tyd domein reaksie, maar 'n swak frekwensieweergawe. Die MA filter voer drie belangrike funksies: 1) Dit neem M insette punte, bere die gemiddelde van die M-punte en produseer 'n enkele uitset punt 2) As gevolg van die berekening / berekeninge betrokke. die filter stel 'n definitiewe bedrag van die vertraging 3) Die filter dien as 'n laaglaatfilter (met 'n swak frekwensiedomein reaksie en 'n goeie tyd domein reaksie). Matlab Kode: Na aanleiding van Matlab kode simuleer die tydgebied reaksie van 'n M-punt bewegende gemiddelde filter en ook plotte die frekwensieweergawe vir verskeie filter lengtes. Tyd Domain Reaksie: Op die eerste plot, ons het die insette wat gaan in die bewegende gemiddelde filter. Die insette is raserig en ons doel is om die geraas te verminder. Die volgende figuur is die uitset reaksie van 'n 3-punt bewegende gemiddelde filter. Dit kan afgelei word uit die figuur dat die 3-punt bewegende gemiddelde filter nie veel in die filter van die geraas gedoen het. Ons verhoog die filter krane tot 51-punte en ons kan sien dat die geraas in die uitset baie, wat uitgebeeld word in die volgende figuur verminder. Ons verhoog die krane verder tot 101 en 501 en ons kan waarneem dat selfs-al die geraas is amper nul, die oorgange is drasties afgestomp uit (kyk na die helling op die weerskante van die sein en vergelyk kan word met die ideale baksteenmuur oorgang in ons insette). Frekwensie: Van die frekwensieweergawe dit kan beweer dat die roll-off is baie stadig en die stop orkes verswakking is nie goed nie. Gegewe hierdie stop-band attenuasie, duidelik, die bewegende gemiddelde filter kan nie een band van frekwensies van 'n ander te skei. Soos ons weet dat 'n goeie vertoning in die tydgebied resultate in 'n swak vertoning in die frekwensiedomein, en omgekeerd. In kort, die bewegende gemiddelde is 'n buitengewoon goeie glad filter (die aksie in die tydgebied), maar 'n besonder slegte laaglaatfilter (die aksie in die frekwensiedomein) Eksterne skakel: aanbevole boeke: Primêre SidebarThe bewegende gemiddelde as 'n Filter die bewegende gemiddelde is dikwels gebruik vir glad data in die teenwoordigheid van ruis. Die eenvoudige bewegende gemiddelde is nie altyd erken as die Eindige Impulse Response (FIR) filter dat dit, terwyl dit eintlik een van die mees algemene filters in seinverwerking. Die behandeling van dit as 'n filter kan vergelyk dit met byvoorbeeld met venster-sed filters (sien die artikels oor lae-pass. Hoë-pass. En orkes-pass en orkes-verwerp filters vir voorbeelde van diegene). Die groot verskil met dié filters is dat die bewegende gemiddelde is geskik vir seine waarvoor die nuttige inligting is vervat in die tydgebied. waarvan glad metings deur die gemiddeld is 'n uitstekende voorbeeld. 'N klein venster-sed filters, aan die ander kant, is sterk presteerders in die frekwensiedomein. met gelykmaking in klank verwerking as 'n tipiese voorbeeld. Daar is 'n meer gedetailleerde vergelyking van beide tipes filters in Time Domain teen frekwensiedomein Performance filters. As jy inligting soek wat beide die tyd en die frekwensie domein is belangrik, dan kan jy 'n blik op variasies op die bewegende gemiddelde het. wat bied 'n aantal geweegde weergawes van die bewegende gemiddelde wat beter op daardie is. Die bewegende gemiddelde lengte (N) kan gedefinieer word as geskryf soos dit tipies is geïmplementeer, met die huidige uitset monster as die gemiddelde van die vorige (N) monsters. Gesien word as 'n filter, die bewegende gemiddelde voer 'n konvolusie van die insette volgorde (xn) met 'n vierkantige pols van lengte (N) en hoogte (1 / N) (om die oppervlakte van die pols te maak, en dus die wins van die filter, een). In die praktyk is dit die beste om (N) vreemd neem. Hoewel 'n bewegende gemiddelde ook kan bereken word met behulp van 'n gelyke getal monsters, met behulp van 'n vreemde waarde vir (N) het die voordeel dat die vertraging van die filter 'n heelgetal van monsters sal wees nie, aangesien die vertraging van 'n filter met (N) monsters is presies ((N-1) / 2). Die bewegende gemiddelde kan dan presies in lyn wees met die oorspronklike data deur die verskuiwing dit deur 'n heelgetal van monsters. Tyd Domain Sedert die bewegende gemiddelde is 'n konvolusie met 'n vierkantige pols, sy frekwensieweergawe is 'n sed funksie. Dit maak dit iets soos die dubbele van die klein venster-sed filter, want dit is 'n konvolusie met 'n sed pols wat lei tot 'n vierkantige frekwensieweergawe. Dit is hierdie sed frekwensieweergawe dat die bewegende gemiddelde n swak presteerder in die frekwensiedomein maak. Maar dit doen baie goed in die tydgebied. Daarom is dit ideaal om data glad geraas te verwyder, terwyl op dieselfde tyd nog 'n vinnige stap reaksie (figuur 1) hou. Vir die tipiese byvoeging Wit Gaussiese ruis (SWGR) wat dikwels aanvaar, gemiddeld (N) monsters het die effek van die verhoging van die SNR met 'n faktor van (sqrt N). Sedert die geraas vir die individuele monsters is ongekorreleerd, daar is geen rede om elke monster anders te behandel. Vandaar die bewegende gemiddelde, wat elke monster dieselfde gewig gee, sal ontslae te raak van die maksimum bedrag van geraas vir 'n gegewe stap reaksie skerp. Implementering Omdat dit 'n FIR filter, kan die bewegende gemiddelde geïmplementeer deur konvolusie. Dit sal dan dieselfde doeltreffendheid (of die gebrek daaraan) as enige ander FIR filter. Maar dit kan ook rekursief geïmplementeer, in 'n baie doeltreffende manier. Dit volg direk uit die definisie dat hierdie formule is die gevolg van die uitdrukkings vir (yn) en (yn1), dit wil sê, waar ons sien dat die verandering tussen (yn1) en (yn) is dat 'n ekstra termyn (xn1 / N) verskyn aan die einde, terwyl die term (xn-N1 / N) van die begin af verwyder. In praktiese toepassings, is dit dikwels moontlik om uit te laat die verdeling deur (N) vir elke kwartaal deur vergoed vir die gevolglike wins van (N) in 'n ander plek. Dit rekursiewe implementering sal baie vinniger as konvolusie wees. Elke nuwe waarde van (y) kan bereken word met net twee toevoegings, in plaas van die (N) toevoegings wat vir 'n eenvoudige implementering van die omskrywing nodig sou wees. Een ding om op die uitkyk vir 'n rekursiewe implementering is dat afrondingsfoute sal ophoop. Dit mag of mag nie 'n probleem vir jou aansoek nie, maar dit beteken ook dat dit rekursiewe implementering eintlik beter met 'n heelgetal implementering sal werk as met swaai-punt getalle. Dit is nogal 'n ongewone, aangesien 'n drywende punt implementering is gewoonlik makliker. Die sluiting van dit alles moet wees dat jy nooit die nut van die eenvoudige bewegende gemiddelde filter in seinverwerking aansoeke moet onderskat nie. Filterontwerp Tool Hierdie artikel word aangevul met 'n Filter Ontwerp instrument. Eksperimenteer met verskillende waardes vir (N) en visualiseer die gevolglike filters. Probeer dit nou


No comments:

Post a Comment